Kolbenweg s =H$2*(I$2/H$2*WURZEL((1+H$2/I$2)^2-K$2^2/I$2^2)-(COS(A2*PI()/180)+I$2/H$2*WURZEL(1-(H$2/I$2*SIN(A2*PI()/180)+K$2/I$2)^2))) s=r*(l/r*sqrt((1+r/l)^2-b^2/l^2)-(cos(φ)+l/r*sqrt(1-(r/l*sin(φ)+b/l)^2))) s = r \left(\frac{l}{r} \, \sqrt{\left(1 + \frac{r}{l}\right)^{2} - \frac{b^{2}}{l^{2}}} - \left(\cos\left({\varphi}\right) + \frac{l}{r} \, \sqrt{1 - \left(\frac{r}{l} \, \sin\left({\varphi}\right) + \frac{b}{l}\right)^{2}}\right)\right) Kolbengeschwindigkeit v =(2*PI()*J$2*H$2*((COS(A2*PI()/180)*((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2))/WURZEL(1-((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2)^2)+SIN(A2*PI()/180)))/60000 v=(2*π*n/60*(r * ((cos(φ) * ((r * sin(φ)) / l + b / l)) / sqrt(1 - ((r * sin(φ)) / l + b / l)^2) + sin(φ)))/60000 v = 2\pi nr \left(\frac{\cos\left({\varphi}\right) \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)}{\sqrt{1 - \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)^{2}}} + \sin\left({\varphi}\right)\right) Kolbenbeschleunigung a =(PI()^2*J$2^2*H$2*(-(SIN(A2*PI()/180)*((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2))/WURZEL(1-((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2)^2)+(H$2*COS(A2*PI()/180)^2)/(I$2*WURZEL(1-((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2)^2))+(H$2*COS(A2*PI()/180)^2*((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2)^2)/(I$2*(1-((H$2*SIN(A2*PI()/180))/I$2+K$2/I$2)^2)^(3/2))+COS(A2*PI()/180)))/900/1000 a = (%pi^2 * n^2 * r * (-(sin(φ) * ((r * sin(φ)) / l + b / l)) / sqrt(1 - ((r * sin(φ)) / l + b / l)^2) + (r * cos(φ)^2) / (l * sqrt(1 - ((r * sin(φ)) / l + b / l)^2)) + (r * cos(φ)^2 * ((r * sin(φ)) / l + b / l)^2) / (l * (1 - ((r * sin(φ)) / l + b / l)^2)^(3 / 2)) + cos(φ))) / 900/60000 a = 4\pi^{2} n^{2} r \left(-\frac{\sin\left({\varphi}\right) \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)}{\sqrt{1 - \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)^{2}}} + \frac{r \cos^{2}\left({\varphi}\right)}{l \sqrt{1 - \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)^{2}}} + \frac{r \cos^{2}\left({\varphi}\right) \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)^{2}}{l \left(1 - \left(\frac{r \sin\left({\varphi}\right)}{l} + \frac{b}{l}\right)^{2}\right)^{\frac{3}{2}}} + \cos\left({\varphi}\right)\right)